A Structure-Conveying Modelling Language for Mathematical and Stochastic Programming

We present a structure-conveying algebraic modelling language for mathematical programming. The proposed language extends AMPL with object-oriented features that allows the user to onstruct models from sub-models, and is implemented as a combination of pre- and post-processing phases for AMPL. Unlike traditional modelling languages, the new approach does not scramble the block structure of the … Read more

Hybrid MPI/OpenMP parallel support vector machine training

Support Vector Machines are a powerful machine learning technology, but the training process involves a dense quadratic optimization problem and is computationally challenging. A parallel implementation of Support Vector Machine training has been developed, using a combination of MPI and OpenMP. Using an interior point method for the optimization and a reformulation that avoids the … Read more

Exploiting separability in large-scale linear support vector machine training

Linear support vector machine training can be represented as a large quadratic program. We present an efficient and numerically stable algorithm for this problem using interior point methods, which requires only O(n) operations per iteration. Through exploiting the separability of the Hessian, we provide a unified approach, from an optimization perspective, to 1-norm classification, 2-norm … Read more