A Branch & Bound Algorithm for Robust Binary Optimization with Budget Uncertainty

Since its introduction in the early 2000s, robust optimization with budget uncertainty has received a lot of attention. This is due to the intuitive construction of the uncertainty sets and the existence of a compact robust reformulation for (mixed-integer) linear programs. However, despite its compactness, the reformulation performs poorly when solving robust integer problems due … Read more

Cycle-based formulations in Distance Geometry

The distance geometry problem asks to find a realization of a given simple edge-weighted graph in a Euclidean space of given dimension K, where the edges are realized as straight segments of lengths equal (or as close as possible) to the edge weights. The problem is often modelled as a mathematical programming formulation involving decision … Read more

Flexible Job Shop Scheduling Problems with Arbitrary Precedence Graphs

A common assumption in the shop scheduling literature is that the processing order of the operations of each job is sequential; however, in practice there can be multiple connections and finish-to-start dependencies among the operations of each job. This paper studies flexible job shop scheduling problems with arbitrary precedence graphs. Rigorous mixed integer and constraint … Read more

Distance geometry and data science

Data are often represented as graphs. Many common tasks in data science are based on distances between entities. While some data science methodologies natively take graphs as their input, there are many more that take their input in vectorial form. In this survey we discuss the fundamental problem of mapping graphs to vectors, and its … Read more

Decomposition-based approaches for a class of two-stage robust binary optimization problems

In this paper, we study a class of two-stage robust binary optimization problems with objective uncertainty where recourse decisions are restricted to be mixed-binary. For these problems, we present a deterministic equivalent formulation through the convexification of the recourse feasible region. We then explore this formulation under the lens of a relaxation, showing that the … Read more

Enriching Solutions to Combinatorial Problems via Solution Engineering

Existing approaches to identify multiple solutions to combinatorial problems in practice are at best limited in their ability to simultaneously incorporate both diversity among generated solutions, as well as problem-specific desires that are apriori unknown, or at least difficult to articulate, for the end-user. We propose a general framework that can generate a set of … Read more

Co-optimization of Demand Response and Reserve Offers for a Major Consumer

In this paper we present a stochastic optimization problem for a strategic major consumer who has flexibility over its consumption and can offer reserve. Our model is a bi-level optimization model (reformulated as a mixed-integer program) that embeds the optimal power flow problem, in which electricity and reserve are co-optimized. We implement this model for … Read more

A successive linear programming algorithm with non-linear time series for the reservoir management problem

This paper proposes a multi-stage stochastic programming formulation based on affine decision rules for the reservoir management problem. Our approach seeks to find a release schedule that balances flood control and power generation objectives while considering realistic operating conditions as well as variable water head. To deal with the non-convexity introduced by the variable water … Read more

Comparison of IP and CNF Models for Control of Automated Valet Parking Systems

In automated valet parking system, a central computer controls a number of robots which have the capability to move in two directions, under cars, lift a car up, carry it to another parking slot, and drop it. We study the theoretical throughput limitations of these systems: Given a car park layout, an initial configuration of … Read more

Exact algorithms for bi-objective ring tree problems with reliability measures

We introduce bi-objective models for ring tree network design with a focus on network reliability within telecommunication applications. Our approaches generalize the capacitated ring tree problem (CRTP) which asks for a partially reliable topology that connects customers with different security requirements to a depot node by combined ring and tree graphs. While the CRTP aims … Read more