A mathematical introduction to SVMs with self-concordant kernel

A derivation of so-called “soft-margin Support Vector Machines with kernel” is presented which does not rely on concepts from functional analysis such as Mercer’s theorem that is frequently cited in this context, and that leads to a new analysis of the continuity properties of the kernel functions such as a new self-concordance condition for the … Read more

The if-then Polytope: Conditional Relations over Multiple Sets of Binary Variables

Inspired by its occurrence as a substructure in a stochastic railway timetabling model, we study in this work a special case of the bipartite boolean quadric polytope. It models conditional relations across three sets of binary variables, where selections within two “if” sets imply a choice in a corresponding “then” set. We call this polytope … Read more

A Parametric Approach for Solving Convex Quadratic Optimization with Indicators Over Trees

This paper investigates convex quadratic optimization problems involving $n$ indicator variables, each associated with a continuous variable, particularly focusing on scenarios where the matrix $Q$ defining the quadratic term is positive definite and its sparsity pattern corresponds to the adjacency matrix of a tree graph. We introduce a graph-based dynamic programming algorithm that solves this … Read more

A Polyhedral Characterization of Linearizable Quadratic Combinatorial Optimization Problems

We introduce a polyhedral framework for characterizing instances of quadratic combinatorial optimization programs (QCOPs) that are linearizable, meaning that the quadratic objective can be equivalently rewritten as linear in such a manner that preserves the objective function value at all feasible solutions. In particular, we show that an instance is linearizable if and only if … Read more

Uncertainty Quantification for Multiobjective Stochastic Convex Quadratic Programs

A multiobjective stochastic convex quadratic program (MOSCQP) is a multiobjective optimization problem with convex quadratic objectives that are observed with stochastic error. MOSCQP is a useful problem formulation arising, for example, in model calibration and nonlinear system identification when a single regression model combines data from multiple distinct sources, resulting in a multiobjective least squares … Read more

Quadratic Optimization Through the Lens of Adjustable Robust Optimization

Quadratic optimization (QO) has been studied extensively in the literature due to its applicability in many practical problems. While practical, it is known that QO problems are generally NP-hard. So, researchers developed many approximation methods to find good solutions. In this paper, we go beyond the norm and analyze QO problems using robust optimization techniques. … Read more

A Family of Spanning-Tree Formulations for the Maximum Cut Problem

We present a family of integer programming formulations for the maximum cut problem. These formulations encode the incidence vectors of the cuts of a connected graph by employing a subset of the odd-cycle inequalities that relate to a spanning tree, and they require only the corresponding edge variables to be integral explicitly. They so describe … Read more

QUBO Dual Bounds via SDP Plane Projection Method

In this paper, we present a new method to solve a certain type of Semidefinite Programming (SDP) problems. These types of SDPs naturally arise in the Quadratic Convex Reformulation (QCR) method and can be used to obtain dual bounds of Quadratic Unconstrained Binary Optimization (QUBO) problems. QUBO problems have recently become the focus of attention … Read more

An Exceptionally Difficult Binary Quadratic Optimization Problem with Symmetry: a Challenge for The Largest Unsolved QAP Instance Tai256c

Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original … Read more

An outer approximation method for solving mixed-integer convex quadratic programs with indicators

Mixed-integer convex quadratic programs with indicator variables (MIQP) encompass a wide range of applications, from statistical learning to energy, finance, and logistics. The outer approximation (OA) algorithm has been proven efficient in solving MIQP, and the key to the success of an OA algorithm is the strength of the cutting planes employed. In this paper, … Read more