Generalized Mixed Integer Rounding Valid Inequalities

We present new families of valid inequalities for (mixed) integer programming (MIP) problems. These valid inequalities are based on a generalization of the 2-step mixed integer rounding (MIR), proposed by Dash and Günlük (2006). We prove that for any positive integer n, n facets of a certain (n+1)-dimensional mixed integer set can be obtained through … Read more