On the Rational Polytopes with Chvatal Rank 1

We study the following problem: given a rational polytope with Chvatal rank 1, does it contain an integer point? Boyd and Pulleyblank observed that this problem is in the complexity class NP ∩ co-NP, an indication that it is probably not NP-complete. It is open whether there is a polynomial time algorithm to solve the … Read more

New Inequalities for Finite and Infinite Group Problems from Approximate Lifting

In this paper, we derive new families of piecewise linear facet-defining inequalities for the finite group problem and extreme inequalities for the infinite group problem using approximate lifting. The new valid inequalities for the finite group problem are two- and three-slope facet-defining inequalities as well as the first family of four-slope facet-defining inequalities. The new … Read more

Extreme inequalities for infinite group problems

In this paper we derive new properties of extreme inequalities for infinite group problems. We develop tools to prove that given valid inequalities for the infinite group problem are extreme. These results show that integer infinite group problems have discontinuous extreme inequalities. These inequalities are strong when compared to related classes of continuous extreme inequalities. … Read more