A decomposition-based warm-start method for stochastic programming

In this paper we propose a warm-start technique for interior point methods applicable to multi-stage stochastic programming problems. The main idea is to generate an initial point for the interior point solver by decomposing the barrier problem associated with the deterministic equivalent at the sec- ond stage and using a concatenation of the solutions of … Read more

A multi-step interior point warm-start approach for large-scale stochastic linear programming

Interior point methods (IPM) have been recognised as an efficient approach for the solution of large scale stochastic programming problems due to their ability of exploiting the block-angular structure of the augmented system particular to this problem class. Stochastic programming problems, however, have exploitable structure beyond the simple matrix shape: namely the scenarios are typically … Read more

A Structure-Conveying Modelling Language for Mathematical and Stochastic Programming

We present a structure-conveying algebraic modelling language for mathematical programming. The proposed language extends AMPL with object-oriented features that allows the user to onstruct models from sub-models, and is implemented as a combination of pre- and post-processing phases for AMPL. Unlike traditional modelling languages, the new approach does not scramble the block structure of the … Read more

A Warm-Start Approach for Large-Scale Stochastic Linear Programs

We describe a method of generating a warm-start point for interior point methods in the context of stochastic programming. Our approach exploits the structural information of the stochastic problem so that it can be seen as a structure-exploiting initial point generator. We solve a small-scale version of the problem corresponding to a reduced event tree … Read more

Further Development of Multiple Centrality Correctors for Interior Point Methods

This paper addresses the role of centrality in the implementation of interior point methods. Theoretical arguments are provided to justify the use of a symmetric neighbourhood. These are translated into computational practice leading to a new insight into the role of re-centering in the implementation of interior point methods. Arguments are provided to show that … Read more