Branch-and-Cut for Complementarity-Constrained Optimization

We report and analyze the results of our computational testing of branch-and-cut for the complementarity-constrained optimization problem (CCOP). Besides the MIP cuts commonly present in commercial optimization software, we used inequalities that explore complementarity constraints. To do so, we generalized two families of cuts proposed earlier by de Farias, Johnson, and Nemhauser that had never … Read more

A Polyhedral Study of the Semi-Continuous Knapsack Problem

We study the convex hull of the feasible set of the semi-continuous knapsack problem, in which the variables belong to the union of two intervals. Besides being important in its own right, the semi-continuous knapsack problem arises in a number of other contexts, e.g. it is a relaxation of general mixed-integer programming. We show how … Read more

Branch-and-Cut for Separable Piecewise Linear Optimization: New Inequalities and Intersection with Semi-Continuous Constraints

We give new facets and valid inequalities for the separable piecewise linear optimization knapsack polytope. We also extend the inequalities to the case in which some of the variables are semi-continuous. In a companion paper (de Farias, Gupta, Kozyreff, Zhao, 2011) we demonstrate the efficiency of the inequalities when used as cuts in a branch-and-cut … Read more

Branch-and-Cut for Separable Piecewise Linear Optimization: Computation

We report and analyze the results of our extensive computational testing of branch-and-cut for piecewise linear optimization using the cutting planes given recently by Zhao and de Farias. Besides analysis of the performance of the cuts, we also analyze the effect of formulation on the performance of branch-and-cut. Finally, we report and analyze initial results … Read more