Accelerated and Inexact forward-backward algorithms

We propose a convergence analysis of accelerated forward-backward splitting methods for minimizing composite functions, when the proximity operator is not available in closed form, and is thus computed up to a certain precision. We prove that the $1/k^2$ convergence rate for the function values can be achieved if the admissible errors are of a certain … Read more

Inexact and accelerated proximal point algorithms

We present inexact accelerated proximal point algorithms for minimizing a proper lower semicon- tinuous and convex function. We carry on a convergence analysis under different types of errors in the evaluation of the proximity operator, and we provide corresponding convergence rates for the objective function values. The proof relies on a generalization of the strategy … Read more

Convergence analysis of a proximal Gauss-Newton method

An extension of the Gauss-Newton algorithm is proposed to find local minimizers of penalized nonlinear least squares problems, under generalized Lipschitz assumptions. Convergence results of local type are obtained, as well as an estimate of the radius of the convergence ball. Some applications for solving constrained nonlinear equations are discussed and the numerical performance of … Read more