An Alternating Manifold Proximal Gradient Method for Sparse PCA and Sparse CCA

Sparse principal component analysis (PCA) and sparse canonical correlation analysis (CCA) are two essential techniques from high-dimensional statistics and machine learning for analyzing large-scale data. Both problems can be formulated as an optimization problem with nonsmooth objective and nonconvex constraints. Since non-smoothness and nonconvexity bring numerical difficulties, most algorithms suggested in the literature either solve … Read more

Proximal Gradient Method for Nonsmooth Optimization over the Stiefel Manifold

We consider optimization problems over the Stiefel manifold whose objective function is the summation of a smooth function and a nonsmooth function. Existing methods for solving this kind of problems can be classified into three classes. Algorithms in the first class rely on information of the subgradients of the objective function and thus tend to … Read more

Geometric descent method for convex composite minimization

In this paper, we extend the geometric descent method recently proposed by Bubeck, Lee and Singh to tackle nonsmooth and strongly convex composite problems. We prove that our proposed algorithm, dubbed geometric proximal gradient method (GeoPG), converges with a linear rate $(1-1/\sqrt{\kappa})$ and thus achieves the optimal rate among first-order methods, where $\kappa$ is the … Read more