Assortment Optimization under the Decision Forest Model

We study the problem of finding the optimal assortment that maximizes expected revenue under the decision forest model, a recently proposed nonparametric choice model that is capable of representing any discrete choice model and in particular, can be used to represent non-rational customer behavior. This problem is of practical importance because it allows a firm … Read more

Column-Randomized Linear Programs: Performance Guarantees and Applications

We propose a randomized method for solving linear programs with a large number of columns but a relatively small number of constraints. Since enumerating all the columns is usually unrealistic, such linear programs are commonly solved by column generation, which is often still computationally challenging due to the intractability of the subproblem in many applications. … Read more