On the Relation Between Affinely Adjustable Robust Linear Complementarity and Mixed-Integer Linear Feasibility Problems

We consider adjustable robust linear complementarity problems and extend the results of Biefel et al.~(2022) towards convex and compact uncertainty sets. Moreover, for the case of polyhedral uncertainty sets, we prove that computing an adjustable robust solution of a given linear complementarity problem is equivalent to solving a properly chosen mixed-integer linear feasibility problem. ArticleDownload … Read more

Affinely Adjustable Robust Linear Complementarity Problems

Linear complementarity problems are a powerful tool for modeling many practically relevant situations such as market equilibria. They also connect many sub-areas of mathematics like game theory, optimization, and matrix theory. Despite their close relation to optimization, the protection of LCPs against uncertainties – especially in the sense of robust optimization – is still in … Read more