Learning Optimal Prescriptive Trees from Observational Data

We consider the problem of learning an optimal prescriptive tree (i.e., a personalized treatment assignment policy in the form of a binary tree) of moderate depth, from observational data. This problem arises in numerous socially important domains such as public health and personalized medicine, where interpretable and data-driven interventions are sought based on data gathered … Read more

Robust Nonparametric Testing for Causal Inference in Observational Studies

We consider the decision problem of making causal conclusions from observational data. Typically, using standard matched pairs techniques, there is a source of uncertainty that is not usually quanti fied, namely the uncertainty due to the choice of the experimenter: two di fferent reasonable experimenters can easily have opposite results. In this work we present an alternative … Read more

Robust Testing for Causal Inference in Observational Studies

A vast number of causal inference studies use matching techniques, where treatment cases are matched with similar control cases. For observational data in particular, we claim there is a major source of uncertainty that is essentially ignored in these tests, which is the way the assignments of matched pairs are constructed. It is entirely possible, … Read more