A conic formulation for hBcnorm optimization

In this paper, we formulate the $l_p$-norm optimization problem as a conic optimization problem, derive its standard duality properties and show it can be solved in polynomial time. We first define an ad hoc closed convex cone, study its properties and derive its dual. This allows us to express the standard $l_p$-norm optimization primal problem … Read more

Proving strong duality for geometric optimization using a conic formulation

Geometric optimization is an important class of problems that has many applications, especially in engineering design. In this article, we provide new simplified proofs for the well-known associated duality theory, using conic optimization. After introducing suitable convex cones and studying their properties, we model geometric optimization problems with a conic formulation, which allows us to … Read more

On implementing a primal-dual interior-point method for conic quadratic optimization

Conic quadratic optimization is the problem of minimizing a linear function subject to the intersection of an affine set and the product of quadratic cones. The problem is a convex optimization problem and has numerous applications in engineering, economics, and other areas of science. Indeed, linear and convex quadratic optimization is a special case. Conic … Read more