Hyperbolic Programs, and Their Derivative Relaxations

We study the algebraic and facial structures of hyperbolic programs, and examine natural relaxations of hyperbolic programs, the relaxations themselves being hyperbolic programs. Citation TR 1406, School of Operations Research, Cornell University, Ithaca, NY 14853, U.S., 3/04 Article Download View Hyperbolic Programs, and Their Derivative Relaxations

Convergence of infeasible-interior-point methods for self-scaled conic programming

We present results on global and polynomial-time convergence of infeasible-interior-point methods for self-scaled conic programming, which includes linear and semidefinite programming. First, we establish global convergence for an algorithm using a wide neighborhood. Next, we prove polynomial complexity for the algorithm with a slightly narrower neighborhood. Both neighborhoods are related to the wide (minus infinity) … Read more

On an Extension of Condition Number Theory to Non-Conic Convex Optimization

The purpose of this paper is to extend, as much as possible, the modern theory of condition numbers for conic convex optimization: z_* := min_x {c’x | Ax-b \in C_Y, x \in C_X }, to the more general non-conic format: (GP_d): z_* := min_x {c’x | Ax-b \in C_Y, x \in P}, where P is … Read more

Detecting Infeasibility in Infeasible-Interior-Point Methods for Optimization

We study interior-point methods for optimization problems in the case of infeasibility or unboundedness. While many such methods are designed to search for optimal solutions even when they do not exist, we show that they can be viewed as implicitly searching for well-defined optimal solutions to related problems whose optimal solutions give certificates of infeasibility … Read more

A D-Induced Duality and Its Applications

This paper attempts to extend the notion of duality for convex cones, by basing it on a pre-described conic ordering and a fixed bilinear mapping. This is an extension of the standard definition of dual cones, in the sense that the {\em nonnegativity}\/ of the inner-product is replaced by a pre-specified conic ordering, defined by … Read more

Unifying optimal partition approach to sensitivity analysis in conic optimization

We study convex conic optimization problems in which the right-hand side and the cost vectors vary linearly as a function of a scalar parameter. We present a unifying geometric framework that subsumes the concept of the optimal partition in linear programming (LP) and semidefinite programming (SDP) and extends it to conic optimization. Similar to the … Read more

On the Primal-Dual Geometry of Level Sets in Linear and Conic Optimization

For a conic optimization problem: minimize cx subject to Ax=b, x \in C, we present a geometric relationship between the maximum norms of the level sets of the primal and the inscribed sizes of the level sets of the dual (or the other way around). Citation MIT Operations Research Center Working Paper Article Download View … Read more

A conic formulation for hBcnorm optimization

In this paper, we formulate the $l_p$-norm optimization problem as a conic optimization problem, derive its standard duality properties and show it can be solved in polynomial time. We first define an ad hoc closed convex cone, study its properties and derive its dual. This allows us to express the standard $l_p$-norm optimization primal problem … Read more

Proving strong duality for geometric optimization using a conic formulation

Geometric optimization is an important class of problems that has many applications, especially in engineering design. In this article, we provide new simplified proofs for the well-known associated duality theory, using conic optimization. After introducing suitable convex cones and studying their properties, we model geometric optimization problems with a conic formulation, which allows us to … Read more

On implementing a primal-dual interior-point method for conic quadratic optimization

Conic quadratic optimization is the problem of minimizing a linear function subject to the intersection of an affine set and the product of quadratic cones. The problem is a convex optimization problem and has numerous applications in engineering, economics, and other areas of science. Indeed, linear and convex quadratic optimization is a special case. Conic … Read more