Large Deviation Bounds for Markov Chain Sample Average Approximation via Weak Convergence

A common approach to solve stochastic optimization problems with expectations is to replace the expectations by its sample averages. Large sample asymptotic properties of this approximation are well studied when the sample is i.i.d. In many cases, however, i.i.d. samples are not readily available. On the contrary, one can generate a Harris recurrent Markov chain … Read more