A single potential governing convergence of conjugate gradient, accelerated gradient and geometric descent
Nesterov’s accelerated gradient (AG) method for minimizing a smooth strongly convex function $f$ is known to reduce $f({\bf x}_k)-f({\bf x}^*)$ by a factor of $\epsilon\in(0,1)$ after $k=O(\sqrt{L/\ell}\log(1/\epsilon))$ iterations, where $\ell,L$ are the two parameters of smooth strong convexity. Furthermore, it is known that this is the best possible complexity in the function-gradient oracle model of … Read more