GRASP with path-relinking for the generalized quadratic assignment problem

The generalized quadratic assignment problem (GQAP) is a generalization of the NP-hard quadratic assignment problem (QAP) that allows multiple facilities to be assigned to a single location as long as the capacity of the location allows. The GQAP has numerous applications, including facility design, scheduling, and network design. In this paper, we propose several GRASP … Read more

GRASP: Advances and applications

GRASP is a multi-start metaheuristic for combinatorial optimization problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phase. The best overall solution is kept as the result. In this … Read more

GRASP

GRASP is a multi-start metaheuristic for combinatorial optimization problems, in which each iteration consists basically of two phases: construction and local search. The construction phase builds a feasible solution, whose neighborhood is investigated until a local minimum is found during the local search phase. The best overall solution is kept as the result. An intensification … Read more

GRASP: Basic components and enhancements

GRASP (Greedy Randomized Adaptive Search Procedures) is a multistart metaheuristic for producing good-quality solutions of combinatorial optimization problems. Each GRASP iteration is usually made up of a construction phase, where a feasible solution is constructed, and a local search phase which starts at the constructed solution and applies iterative improvement until a locally optimal solution … Read more

Hybrid GRASP heuristics

Experience has shown that a crafted combination of concepts of different metaheuristics can result in robust combinatorial optimization schemes and produce higher solution quality than the individual metaheuristics themselves, especially when solving difficult real-world combinatorial optimization problems. This chapter gives an overview of different ways to hybridize GRASP (Greedy Randomized Adaptive Search Procedures) to create … Read more

An annotated bibliography of GRASP, Part I: Algorithms

A greedy randomized adaptive search procedure (GRASP) is a metaheuristic for combinatorial optimization. It is a multi-start or iterative process, in which each GRASP iteration consists of two phases, a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed … Read more

An annotated bibliography of GRASP, Part II: Applications

A greedy randomized adaptive search procedure (GRASP) is a metaheuristic for combinatorial optimization. It is a multi-start or iterative process, in which each GRASP iteration consists of two phases, a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed … Read more

GRASP and path relinking for the max-min diversity problem

The Max-Min Diversity Problem (MMDP) consists in selecting a subset of elements from a given set in such a way that the diversity among the selected elements is maximized. The problem is NP-hard and can be formulated as an integer linear program. Since the 1980s, several solution methods for this problem have been developed and … Read more

GRASP with path-relinking for the multi-plant capacitated lot sizing problem

This paper addresses the independent multi-plant, multi-period, and multi-item capacitated lot sizing problem where transfers between the plants are allowed. This is an NP-hard combinatorial optimization problem and few solution methods have been proposed to solve it. We develop a GRASP (Greedy Randomized Adaptive Search Procedure) heuristic as well as a path-relinking intensification procedure to … Read more

Hybrid heuristics for the permutation flow shop problem

The Flow Shop Problem (FSP) is known to be NP-hard when more than three machines are considered. Thus, for non-trivial size problem instances, heuristics are needed to find good orderings. We consider the permutation case of this problem. For this case, denoted by F|prmu|Cmax, the sequence of jobs has to remain the same at each … Read more