Convergence analysis of an inexact relaxed augmented Lagrangian method
In this paper, we develop an Inexact Relaxed Augmented Lagrangian Method (IR-ALM) for solving a class of convex optimization problems. Flexible relative error criteria are designed for approximately solving the resulting subproblem, and a relaxation step is exploited to accelerate its convergence numerically. By a unified variational analysis, we establish the global convergence of this … Read more