A New Primal-Dual Interior-Point Algorithm for Second-Order Cone Optimization

We present a primal-dual interior-point algorithm for second-order conic optimization problems based on a specific class of kernel functions. This class has been investigated earlier for the case of linear optimization problems. In this paper we derive the complexity bounds $O(\sqrt{N})(\log N)\log\frac{N}{\epsilon})$ for large- and $O(\sqrt{N})\log\frac{N}{\epsilon}$ for small- update methods, respectively. Here $N$ denotes the … Read more

Primal-Dual Interior-Point Algorithms for Semidefinite Optimization Based on a Simple Kernel Function

Interior-point methods (IPMs) for semidefinite optimization (SDO) have been studied intensively, due to their polynomial complexity and practical efficiency. Recently, J.Peng et al. introduced so-called self-regular kernel (and barrier) functions and designed primal-dual interior-point algorithms based on self-regular proximity for linear optimization (LO) problems. They have also extended the approach for LO to SDO. In … Read more