Generalized differentiation with positively homogeneous maps: Applications in set-valued analysis and metric regularity
We propose a new concept of generalized differentiation of set-valued maps that captures the first order information. This concept encompasses the standard notions of Frechet differentiability, strict differentiability, calmness and Lipschitz continuity in single-valued maps, and the Aubin property and Lipschitz continuity in set-valued maps. We present calculus rules, sharpen the relationship between the Aubin … Read more