Inner Conditions for Error Bounds and Metric Subregulerity of Multifunctions

We introduce a new class of sets, functions and multifunctions which is shown to be large and to enjoy some nice common properties with the convex setting. Error bounds for objects attached to this class are characterized in terms of inner conditions of Abadie’s type, that is conditions bearing on normal cones and coderivatives at … Read more

Variational Geometric Approach to Generalized Differential and Fenchel Conjugate Calculi in Convex Analysis

This paper develops a geometric approach of variational analysis for the case of convex objects considered in locally convex topological spaces and also in Banach space settings. Besides deriving in this way new results of convex calculus, we present an overview of some known achievements with their uni ed and simplified proofs based on the developed … Read more

Partial Second-Order Subdifferentials in Variational Analysis and Optimization

This paper presents a systematic study of partial second-order subdifferentials for extended-real-valued functions, which have already been applied to important issues of variational analysis and constrained optimization in finite-dimensional spaces. The main results concern developing extended calculus rules for these second-order constructions in both finite-dimensional and infinite-dimensional frameworks. We also provide new applications of partial … Read more

Generalized differentiation with positively homogeneous maps: Applications in set-valued analysis and metric regularity

We propose a new concept of generalized differentiation of set-valued maps that captures the first order information. This concept encompasses the standard notions of Frechet differentiability, strict differentiability, calmness and Lipschitz continuity in single-valued maps, and the Aubin property and Lipschitz continuity in set-valued maps. We present calculus rules, sharpen the relationship between the Aubin … Read more

On the control of an evolutionary equilibrium in micromagnetics

We formulate an optimal control problem of magnetization in a ferromagnet as a mathematical program with evolutionary equilibrium constraints. The evolutionary nature of the equilibrium is due to the hysteresis behavior of the respective magnetization process. To solve the problem numerically, we adapted the implicit programming technique. The adjoint equations, needed to compute the subgradients … Read more