Smoothing SQP Algorithm for Non-Lipschitz Optimization with Complexity Analysis

In this paper, we propose a smoothing sequential quadratic programming (SSQP) algorithm for solving a class of nonsmooth nonconvex, perhaps even non-Lipschitz minimization problems, which has wide applications in statistics and sparse reconstruction. At each step, the SSQP algorithm solves a strongly convex quadratic minimization problem with a diagonal Hessian matrix, which has a simple … Read more