The Triangle Closure is a Polyhedron

Recently, cutting planes derived from maximal lattice-free convex sets have been studied intensively by the integer programming community. An important question in this research area has been to decide whether the closures associated with certain families of lattice-free sets are polyhedra. For a long time, the only result known was the celebrated theorem of Cook, … Read more

Algorithimic and Complexity Results for Cutting Planes Derived from Maximal Lattice-Free Convex Sets

We study a mixed integer linear program with $m$ integer variables and $k$ non-negative continuous variables in the form of the relaxation of the corner polyhedron that was introduced by Andersen, Louveaux, Weismantel and Wolsey [\emph{Inequalities from two rows of a simplex tableau}, Proc.\ IPCO 2007, LNCS, vol.~4513, Springer, pp.~1–15]. We describe the facets of … Read more