A polynomial-time descent method for separable convex optimization problems with linear constraints

We propose a polynomial algorithm for a separable convex optimization problem with linear constraints. We do not make any additional assumptions about the structure of the objective function except for polynomial computability. That is, the objective function can be non-differentiable. The running time of our algorithm is polynomial in the the size of the input … Read more

A polynomial algorithm for linear optimization which is strongly polynomial under certain conditions on optimal solutions

This paper proposes a polynomial algorithm for linear programming which is strongly polynomial for linear optimization problems $\min\{c^Tx : Ax = b, x\ge {\bf 0}\}$ having optimal solutions where each non-zero component $x_j$ belongs to an interval of the form $[\alpha_j, \alpha_j\cdot 2^{p(n)}],$ where $\alpha_j$ is some positive value and $p(n)$ is a polynomial of … Read more

A Polynomial Arc-Search Interior-Point Algorithm for Linear Programming

In this paper, ellipse is used to approximate the central path of the linear programming. An interior-point algorithm is devised to search the optimizers along the ellipse. The algorithm is proved to be polynomial with the complexity bound $O(n^{\frac{1}{2}}\log(1/\epsilon))$. Numerical test is conducted for problems in Netlib. For most tested Netlib problems, the result shows … Read more

A Polynomial Arc-Search Interior-Point Algorithm for Convex Quadratic Programming

Arc-search is developed for linear programming in \cite{yang09, yang10}. The algorithms search for optimizers along an ellipse that are approximations of the central path. In this paper, the arc-search method is applied to primal-dual path-following interior-point method for convex quadratic programming. A simple algorithm with iteration complexity $O(\sqrt{n}\log(1/\epsilon))$ is devised. Several improvements on the simple … Read more