A relative-error inertial-relaxed inexact projective splitting algorithm

For solving structured monotone inclusion problems involving the sum of finitely many maximal monotone operators, we propose and study a relative-error inertial-relaxed inexact projective splitting algorithm. The proposed algorithm benefits from a combination of inertial and relaxation effects, which are both controlled by parameters within a certain range. We propose sufficient conditions on these parameters … Read more

Single-Forward-Step Projective Splitting: Exploiting Cocoercivity

This work describes a new variant of projective splitting for monotone inclusions, in which cocoercive operators can be processed with a single forward step per iteration. This result establishes a symmetry between projective splitting algorithms, the classical forward backward splitting method (FB), and Tseng’s forward-backward-forward method (FBF). Another symmetry is that the new procedure allows … Read more