Randomized Derivative-Free Optimization of Noisy Convex Functions

We propose STARS, a randomized derivative-free algorithm for unconstrained optimization when the function evaluations are contaminated with random noise. STARS takes dynamic, noise-adjusted smoothing step-sizes that minimize the least-squares error between the true directional derivative of a noisy function and its finite difference approximation. We provide a convergence rate analysis of STARS for solving convex … Read more