Normal Approximation for Stochastic Gradient Descent via Non-Asymptotic Rates of Martingale CLT
We provide non-asymptotic convergence rates of the Polyak-Ruppert averaged stochastic gradient descent (SGD) to a normal random vector for a class of twice-differentiable test functions. A crucial intermediate step is proving a non-asymptotic martingale central limit theorem (CLT), i.e., establishing the rates of convergence of a multivariate martingale difference sequence to a normal random vector, … Read more