On the ReLU Lagrangian Cuts for Stochastic Mixed Integer Programming

We study stochastic mixed integer programs with both first-stage and recourse decisions involving mixed integer variables. A new family of Lagrangian cuts, termed “ReLU Lagrangian cuts,” is introduced by reformulating the nonanticipativity constraints using ReLU functions. These cuts can be integrated into scenario decomposition methods. We show that including ReLU Lagrangian cuts is sufficient to … Read more