Singular value half thresholding algorithm for lp regularized matrix optimization problems

In this paper, we study the low-rank matrix optimization problem, where the penalty term is the $\ell_p~(0<p<1)$ regularization. Inspired by the good performance of half thresholding function in sparse/low-rank recovery problems, we propose a singular value half thresholding (SVHT) algorithm to solve the $\ell_p$ regularized matrix optimization problem. The main iteration in SVHT algorithm makes … Read more