## A SMART Stochastic Algorithm for Nonconvex Optimization with Applications to Robust Machine Learning

Machine learning theory typically assumes that training data is unbiased and not adversarially generated. When real training data deviates from these assumptions, trained models make erroneous predictions, sometimes with disastrous effects. Robust losses, such as the huber norm are designed to mitigate the effects of such contaminated data, but they are limited to the regression … Read more