Computing closest stable non-negative matrices

Problem of finding the closest stable matrix for a dynamical system has many applications. It is well studied both for continuous and discrete-time systems, and the corresponding optimization problems are formulated for various matrix norms. As a rule, non-convexity of these formulations does not allow finding their global solutions. In this paper, we analyze positive … Read more

Optimizing the Spectral Radius

We suggest an approach for finding the maximal and the minimal spectral radius of linear operators from a given compact family of operators, which share a common invariant cone (e.g. for a family of nonnegative matrices). In case of families with so-called product structure, this leads to efficient algorithms for optimizing the spectral radius and … Read more

Optimal Stability and Eigenvalue Multiplicity

We consider the problem of minimizing over an affine set of square matrices the maximum of the real parts of the eigenvalues. Such problems are prototypical in robust control and stability analysis. Under nondegeneracy conditions, we show that the multiplicities of the active eigenvalues at a critical matrix remain unchanged under small perturbations of the … Read more

Optimizing Matrix Stability

Given an affine subspace of square matrices, we consider the problem of minimizing the spectral abscissa (the largest real part of an eigenvalue). We give an example whose optimal solution has Jordan form consisting of a single Jordan block, and we show, using nonlipschitz variational analysis, that this behaviour persists under arbitrary small perturbations to … Read more

Approximating Subdifferentials by Random Sampling of Gradients

Many interesting real functions on Euclidean space are differentiable almost everywhere. All Lipschitz functions have this property, but so, for example, does the spectral abscissa of a matrix (a non-Lipschitz function). In practice, the gradient is often easy to compute. We investigate to what extent we can approximate the Clarke subdifferential of such a function … Read more