Stochastic optimization and sparse statistical recovery: An optimal algorithm for high dimensions
We develop and analyze stochastic optimization algorithms for problems in which the expected loss is strongly convex, and the optimum is (approximately) sparse. Previous approaches are able to exploit only one of these two structures, yielding an $\order(\pdim/T)$ convergence rate for strongly convex objectives in $\pdim$ dimensions, and an $\order(\sqrt{(\spindex \log \pdim)/T})$ convergence rate when … Read more