A structured quasi-Newton algorithm for optimizing with incomplete Hessian information
We present a structured quasi-Newton algorithm for unconstrained optimization problems that have unavailable second-order derivatives or Hessian terms. We provide a formal derivation of the well-known BFGS secant update formula that approximates only the missing Hessian terms, and we propose a line-search quasi-Newton algorithm based on a modification of Wolfe conditions that converges to first-order … Read more