Quadratically Perturbed Chance Constrained Programming with Fitted Distribution: t-Distribution vs. Gaussian
For chance-constrained programming (CCP) with non-Gaussian uncertainty, the optimization is generally intractable owing to the complicated probability density function (PDF). Using a simple fitted distribution with Kullback-Leibler (KL) divergence to represent the PDF mismatch is a systematic way to tackle CCP with non-Gaussian uncertainty. However, the essential difficulty of this methodology is to choose the … Read more