Hidden convexity, optimization, and algorithms on rotation matrices
\(\) This paper studies hidden convexity properties associated with constrained optimization problems over the set of rotation matrices \(\text{SO}(n)\). Such problems are nonconvex due to the constraint\(X\in\text{SO}(n)\). Nonetheless, we show that certain linear images of \(\text{SO}(n)\) are convex, opening up the possibility for convex optimization algorithms with provable guarantees for these problems. Our main technical … Read more