In this paper we study optimization problems with second-order stochastic dominance constraints. This class of problems has been receiving increasing attention in the literature as it allows for the modeling of optimization problems where a risk-averse decision maker wants to ensure that the solution produced by the model dominates certain benchmarks. Here we deal with the case of multi-variate stochastic dominance under general distributions and nonlinear functions. We introduce the concept of C-dominance, which generalizes some notions of multi-variate dominance found in the literature. We apply the Sample Average Approximation (SAA) method to this problem, which results in a semi-infinite program, and study asymptotic convergence of optimal values and optimal solutions, as well as the rate of convergence of the feasibility set of the resulting semi-infinite program as the sample size goes to infinity. We develop a finitely convergent method to find an epsilon-optimal solution of the SAA problem. We also give methods to construct practical statistical lower and upper bounds for the true optimal objective value.
Citation
Manuscript, Department of Industrial Engineering and Management Sciences, Northwestern University
Article
View Sample Average Approximation for Stochastic Dominance Constrained Programs