On approximate solutions for robust semi-infinite multi-objective convex symmetric cone optimization

We present approximate solutions for the robust semi-infinite multi-objective convex symmetric cone programming problem. By using the robust optimization approach, we establish an approximate optimality theorem and approximate duality theorems for approximate solutions in convex symmetric cone optimization problem involving infinitely many constraints to be satisfied and multiple objectives to be optimized simultaneously under the … Read more

Adaptive discretization-based algorithms for semi-infinite programs with unbounded variables

The proof of convergence of adaptive discretization-based algorithms for semi-infinite programs (SIPs) usually relies on compact host sets for the upper- and lower-level variables. This assumption is violated in some applications, and we show that indeed convergence problems can arise when discretization-based algorithms are applied to SIPs with unbounded variables. To mitigate these convergence problems, … Read more

Moreau envelope of supremum functions with applications to infinite and stochastic programming

In this paper, we investigate the Moreau envelope of the supremum of a family of convex, proper, and lower semicontinuous functions. Under mild assumptions, we prove that the Moreau envelope of a supremum is the supremum of Moreau envelopes, which allows us to approximate possibly nonsmooth supremum functions by smooth functions that are also the … Read more

Volumetric barrier decomposition algorithms for two-stage stochastic linear semi-infinite programming

In this paper, we study the two-stage stochastic linear semi-infinite programming with recourse to handle uncertainty in data defining (deterministic) linear semi-infinite programming. We develop and analyze volumetric barrier decomposition-based interior point methods for solving this class of optimization problems, and present a complexity analysis of the proposed algorithms. We establish our convergence analysis by … Read more

Decomposition Algorithms for Distributionally Robust Optimization using Wasserstein Metric

We study distributionally robust optimization (DRO) problems where the ambiguity set is de ned using the Wasserstein metric. We show that this class of DRO problems can be reformulated as semi-in nite programs. We give an exchange method to solve the reformulated problem for the general nonlinear model, and a central cutting-surface method for the convex case, … Read more

Semi-infinite programming using high-degree polynomial interpolants and semidefinite programming

In a common formulation of semi-infinite programs, the infinite constraint set is a requirement that a function parametrized by the decision variables is nonnegative over an interval. If this function is sufficiently closely approximable by a polynomial or a rational function, then the semi-infinite program can be reformulated as an equivalent semidefinite program. Solving this … Read more

A collision detection approach for maximizing the material utilization

We introduce a new method for a task of maximal material utilization, which is is to fit a flexible, scalable three-dimensional body into another aiming for maximal volume whereas position and shape may vary. The difficulty arises from the containment constraint which is not easy to handle numerically. We use a collision detection method to … Read more

A cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimization

We first present and analyze a central cutting surface algorithm for general semi-infinite convex optimization problems, and use it to develop an algorithm for distributionally robust optimization problems in which the uncertainty set consists of probability distributions with given bounds on their moments. The cutting surface algorithm is also applicable to problems with non-differentiable semi-infinite … Read more

Calmness modulus of linear semi-infinite programs

Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide … Read more

Nonsmooth cone-constrained optimization with applications to semi-infinite programming

The paper is devoted to the study of general nonsmooth problems of cone-constrained optimization (or conic programming) important for various aspects of optimization theory and applications. Based on advanced constructions and techniques of variational analysis and generalized differentiation, we derive new necessary optimality conditions (in both “exact” and “fuzzy” forms) for nonsmooth conic programs, establish … Read more