On RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions Using Lq Quasi Norms

This paper follows the recent discussion on the sparse solution recovery with quasi-norms Lq; q\in(0,1) when the sensing matrix possesses a Restricted Isometry Constant \delta_{2k} (RIC). Our key tool is an improvement on a version of ``the converse of a generalized Cauchy-Schwarz inequality" extended to the setting of quasi-norm. We show that, if \delta_{2k}\le 1/2, any minimizer of the Lq minimization, at least for those q\in (0, 0.9181], is the sparse solution of the corresponding underdetermined linear system. Moreover, if \delta_{2k}\le 0.4931, the sparse solution can be recovered by any lq; q \in(0,1) minimization. The values 0.9181 and 0.4931 improves those reported previously in the literature.

Citation

unpublished

Article

Download

View On RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions Using Lq Quasi Norms