Strengthening Lasserre’s Hierarchy in Real and Complex Polynomial Optimization

We establish a connection between multiplication operators and shift operators. Moreover, we derive positive semidefinite conditions of finite rank moment sequences and use these conditions to strengthen Lasserre’s hierarchy for real and complex polynomial optimization. Integration of the strengthening technique with sparsity is considered. Extensive numerical experiments show that our strengthening technique can significantly improve … Read more

Sparse Polynomial Optimization with Unbounded Sets

This paper considers sparse polynomial optimization with unbounded sets. When the problem possesses correlative sparsity, we propose a sparse homogenized Moment-SOS hierarchy with perturbations to solve it. The new hierarchy introduces one extra auxiliary variable for each variable clique according to the correlative sparsity pattern. Under the running intersection property, we prove that this hierarchy … Read more

Exact Matrix Completion via High-Rank Matrices in Sum-of-Squares Relaxations

We study exact matrix completion from partially available data with hidden connectivity patterns. Exact matrix completion was shown to be possible recently by Cosse and Demanet in 2021 with Lasserre’s relaxation using the trace of the variable matrix as the objective function with given data structured in a chain format. In this study, we introduce … Read more

Solving Nonconvex Optimization Problems using Outer Approximations of the Set-Copositive Cone

We consider the solution of nonconvex quadratic optimization problems using an outer approximation of the set-copositive cone that is iteratively strengthened with conic constraints and cutting planes. Our methodology utilizes an MILP-based oracle for a generalization of the copositive cone that considers additional linear equality constraints. In numerical testing we evaluate our algorithm on a … Read more

A real moment-HSOS hierarchy for complex polynomial optimization with real coefficients

This paper proposes a real moment-HSOS hierarchy for complex polynomial optimization problems with real coefficients. We show that this hierarchy provides the same sequence of lower bounds as the complex analogue, yet is much cheaper to solve. In addition, we prove that global optimality is achieved when the ranks of the moment matrix and certain … Read more

Convex envelopes of bounded monomials on two-variable cones

\(\) We consider an \(n\)-variate monomial function that is restricted both in value by lower and upper bounds and in domain by two homogeneous linear inequalities. Such functions are building blocks of several problems found in practical applications, and that fall under the class of Mixed Integer Nonlinear Optimization. We show that the upper envelope … Read more

A more efficient reformulation of complex SDP as real SDP

This note proposes a novel reformulation of complex semidefinite programs (SDPs) as real SDPs. As an application, we present an economical reformulation of complex SDP relaxations of complex polynomial optimization problems as real SDPs and derive some further reductions by exploiting structure of the complex SDP relaxations. Various numerical examples demonstrate that our new reformulation … Read more

Optimal Low-Rank Matrix Completion: Semidefinite Relaxations and Eigenvector Disjunctions

Low-rank matrix completion consists of computing a matrix of minimal complexity that recovers a given set of observations as accurately as possible. Unfortunately, existing methods for matrix completion are heuristics that, while highly scalable and often identifying high-quality solutions, do not possess any optimality guarantees. We reexamine matrix completion with an optimality-oriented eye. We reformulate … Read more

Nonexpansive Markov Operators and Random Function Iterations for Stochastic Fixed Point Problems

We study the convergence of random function iterations for finding an invariant measure of the corresponding Markov operator. We call the problem of finding such an invariant mea- sure the stochastic fixed point problem. This generalizes earlier work studying the stochastic feasibility problem, namely, to find points that are, with probability 1, fixed points of … Read more

A Radial Basis Function Method for Noisy Global Optimisation

We present a novel response surface method for global optimisation of an expensive and noisy (black-box) objective function, where error bounds on the deviation of the observed noisy function values from their true counterparts are available. The method is based on the well-established RBF method by Gutmann (2001a,c) for minimising an expensive and deterministic objective … Read more