We generalize the notions of user equilibrium and system optimum to non-atomic congestion games with stochastic demands. We establish upper bounds on the price of anarchy for three different settings of link cost functions and demand distributions, namely, (a) affine cost functions and general distributions, (b) polynomial cost functions and general positive-valued distributions, and (c) polynomial cost functions and the normal distributions. All the upper bounds are tight in some special cases, including the case of deterministic demands.
Citation
Warwick Business School & Centre for Discrete Mathematics and its Applications (DIMAP), University of Warwick, CV4 7AL, UK, 10/2013