Robust optimization is an important technique to immunize optimization problems against data uncertainty. In the case of a linear program and an ellipsoidal uncertainty set, the robust counterpart turns into a second-order cone program. In this work, we investigate the efficiency of linearizing the second-order cone constraints of the latter. This is done using the optimal linear outer-approximation approach by Ben-Tal and Nemirovski [2001] from which we derive an optimal inner approximation of the second-order cone. We examine the performance of this approach on various benchmark sets including portfolio optimization instances as well as (robustified versions of) the MIPLIB and the SNDlib.