Superadditive duality and convex hulls for mixed-integer conic optimization

We present an infinite family of linear valid inequalities for a mixed-integer conic program, and prove that these inequalities describe the convex hull of the feasible set when this set is bounded and described by integral data. The main element of our proof is to establish a new strong superadditive dual for mixed-integer conic programming … Read more

Towards practical generic conic optimization

Many convex optimization problems can be represented through conic extended formulations with auxiliary variables and constraints using only the small number of standard cones recognized by advanced conic solvers such as MOSEK 9. Such extended formulations are often significantly larger and more complex than equivalent conic natural formulations, which can use a much broader class … Read more

Autonomous traffic at intersections: an optimization-based analysis of possible time, energy, and CO2 savings

In the growing field of autonomous driving, traffic-light controlled intersections as the nodes of large traffic networks are of special interest. We want to analyze how much an optimized coordination of vehicles and infrastructure can contribute to a more efficient transit through these bottlenecks. In addition, we are interested in sensitivity of the results with … Read more

A smaller extended formulation for the odd cycle inequalities of the stable set polytope

For sparse graphs, the odd cycle polytope can be used to compute useful bounds for the maximum stable set problem quickly. Yannakakis introduced an extended formulation for the odd cycle inequalities of the stable set polytope in 1991, which provides a direct way to optimize over the odd cycle polytope in polynomial time, although there … Read more

Layered graph approaches for combinatorial optimization problems

Extending the concept of time-space networks, layered graphs associate information about one or multiple resource state values with nodes and arcs. While integer programming formulations based on them allow to model complex problems comparably easy, their large size makes them hard to solve for non-trivial instances. We detail and classify layered graph modeling techniques that … Read more

Parity Polytopes and Binarization

We consider generalizations of parity polytopes whose variables, in addition to a parity constraint, satisfy certain ordering constraints. More precisely, the variable domain is partitioned into k contiguous groups, and within each group, we require the variables to be sorted nonincreasingly. Such constraints are used to break symmetry after replacing an integer variable by a … Read more

Binary Extended Formulations of Polyhedral Mixed-integer Sets

We analyze different ways of constructing binary extended formulations of polyhedral mixed-integer sets with bounded integer variables and compare their relative strength with respect to split cuts. We show that among all binary extended formulations where each bounded integer variable is represented by a distinct collection of binary variables, what we call “unimodular” extended formulations … Read more

Extended formulations for convex hulls of some bilinear functions

We consider the problem of characterizing the convex hull of the graph of a bilinear function $f$ on the $n$-dimensional unit cube $[0,1]^n$. Extended formulations for this convex hull are obtained by taking subsets of the facets of the Boolean Quadric Polytope (BQP). Extending existing results, we propose the systematic study of properties of $f$ … Read more

Extended Formulations for Column Constrained Orbitopes

In the literature, packing and partitioning orbitopes were discussed to handle symmetries that act on variable matrices in certain binary programs. In this paper, we extend this concept by restrictions on the number of 1-entries in each column. We develop extended formulations of the resulting polytopes and present numerical results that show their effect on … Read more

On the Size of Integer Programs with Bounded Coefficients or Sparse Constraints

Integer programming formulations describe optimization problems over a set of integer points. A fundamental problem is to determine the minimal size of such formulations, in particular, if the size of the coefficients or sparsity of the constraints is bounded. This article considers lower and upper bounds on these sizes both in the original and in … Read more