Range of the displacement operator of PDHG with applications to quadratic and conic programming

Primal-dual hybrid gradient (PDHG) is a first-order method for saddle-point problems and convex programming introduced by Chambolle and Pock. Recently, Applegate et al. analyzed the behavior of PDHG when applied to an infeasible or unbounded instance of linear programming, and in particular, showed that PDHG is able to diagnose these conditions. Their analysis hinges on … Read more

Distributionally robust chance-constrained Markov decision processes

Markov decision process (MDP) is a decision making framework where a decision maker is interested in maximizing the expected discounted value of a stream of rewards received at future stages at various states which are visited according to a controlled Markov chain. Many algorithms including linear programming methods are available in the literature to compute … Read more

A Quadratically Convergent Sequential Programming Method for Second-Order Cone Programs Capable of Warm Starts

We propose a new method for linear second-order cone programs. It is based on the sequential quadratic programming framework for nonlinear programming. In contrast to interior point methods, it can capitalize on the warm-start capabilities of active-set quadratic programming subproblem solvers and achieve a local quadratic rate of convergence. In order to overcome the non-differentiability … Read more

An MISOCP-Based Decomposition Approach for the Unit Commitment Problem with AC Power Flows

Unit Commitment (UC) and Optimal Power Flow (OPF) are two fundamental problems in short-term electric power systems planning that are traditionally solved sequentially. The state-of-the-art mostly uses a direct current flow approximation of the power flow equations in the UC-level and the generator commitments obtained are sent as input to the OPF-level. However, such an … Read more

Hub Network Design Problem with Capacity, Congestion and Stochastic Demand Considerations

We introduce the hub network design problem with congestion, capacity, and stochastic demand considerations (HNDC), which generalizes the classical hub location problem in several directions. In particular, we extend state-of-the-art by integrating capacity acquisition decision and congestion cost effect into the problem and allowing dynamic routing for origin-destination pairs. Connecting strategic and operational level decisions, … Read more

Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming

In [R. Andreani, G. Haeser, L. M. Mito, H. Ramírez C., Weak notions of nondegeneracy in nonlinear semidefinite programming, arXiv:2012.14810, 2020] the classical notion of nondegeneracy (or transversality) and Robinson’s constraint qualification have been revisited in the context of nonlinear semidefinite programming exploiting the structure of the problem, namely, its eigendecomposition. This allows formulating the … Read more

Applications of stochastic mixed-integer second-order cone optimization

Second-order cone programming problems are a tractable subclass of convex optimization problems and there are known polynomial algorithms for solving them. Stochastic second-order cone programming problems have also been studied in the past decade and efficient algorithms for solving them exist. A new class of interest to optimization community and practitioners is the mixed-integer version … Read more

The Promise of EV-Aware Multi-Period OPF Problem: Cost and Emission Benefits

In this paper, we study the Multi-Period Optimal Power Flow problem (MOPF) with electric vehicles (EV) under emission considerations. We integrate three different real-world datasets: household electricity consumption, marginal emission factors, and EV driving profiles. We present a systematic solution approach based on second-order cone programming to find globally optimal solutions for the resulting nonconvex … Read more

Barrier Methods Based on Jordan-Hilbert Algebras for Stochastic Optimization in Spin Factors

We present decomposition logarithmic-barrier interior-point methods based on unital Jordan-Hilbert algebras for infinite-dimensional stochastic second-order cone programming problems in spin factors. The results show that the iteration complexity of the proposed algorithms is independent on the choice of Hilbert spaces from which the underlying spin factors are formed, and so it coincides with the best … Read more

Solving AC Optimal Power Flow with Discrete Decisions to Global Optimality

We present a solution framework for general alternating current optimal power flow (AC OPF) problems that include discrete decisions. The latter occur, for instance, in the context of the curtailment of renewables or the switching of power generation units and transmission lines. Our approach delivers globally optimal solutions and is provably convergent. We model AC … Read more