This paper describes an algorithm for solving structured nonsmooth convex optimization problems using OSGA, a first-order method with the complexity $O(\eps^{-2})$ for Lipschitz continuous nonsmooth problems and $O(\eps^{-1/2})$ for smooth problems with Lipschitz continuous gradient. If the nonsmoothness of the problem is manifested in a structured way, we reformulate the problem in a form that can be solved efficiently by OSGA with the complexity $O(\eps^{-1/2})$. To solve the reformulated problem, we equip OSGA by an appropriate prox-function for which the OSGA subproblem can be solved either in a closed form or by a simple iterative scheme, which decreases the computational cost of applying the algorithm, especially for large-scale problems. We show that applying the new scheme is feasible for many problems arising in applications.
Citation
Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria May 2015
Article
View Solving nonsmooth convex optimization with complexity (eps^{-1/2})$