Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization. Part II: Complexity and Numerical Results

We present complexity and numerical results for a new asynchronous parallel algorithmic method for the minimization of the sum of a smooth nonconvex function and a convex nonsmooth regularizer, subject to both convex and nonconvex constraints. The proposed method hinges on successive convex approximation techniques and a novel probabilistic model that captures key elements of modern computational architectures and asynchronous implementations in a more faithful way than state-of-the-art models. In the companion paper we provided a detailed description on the probabilistic model and gave convergence results for a diminishing stepsize version of our method. Here, we provide theoretical complexity results for a fixed stepsize version of the method and report extensive numerical comparisons on both convex and nonconvex problems demonstrating the efficiency of our approach.

Article

Download

View Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization. Part II: Complexity and Numerical Results