A line search based proximal stochastic gradient algorithm with dynamical variance reduction

Many optimization problems arising from machine learning applications can be cast as the minimization of the sum of two functions: the first one typically represents the expected risk, and in practice it is replaced by the empirical risk, and the other one imposes a priori information on the solution. Since in general the first term … Read more

Delay and disruption management at ATM: technical details

Most of the local public transit companies have vehicle monitoring systems able to collect huge quantities of data in real-time. Typically, these data are used to measure the performance of the transportation system, and rarely they are fully exploited to improve it and to tackle disruptions. In this report we take into consideration the case … Read more

Parallel and Distributed Successive Convex Approximation Methods for Big-Data Optimization

Recent years have witnessed a surge of interest in parallel and distributed optimization methods for large-scale systems. In particular, nonconvex large-scale optimization problems have found a wide range of applications in several engineering fields. The design and the analysis of such complex, large-scale, systems pose several challenges and call for the development of new optimization … Read more

Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization. Part I: Model and Convergence

We propose a novel asynchronous parallel algorithmic framework for the minimization of the sum of a smooth nonconvex function and a convex nonsmooth regularizer, subject to both convex and nonconvex constraints. The proposed framework hinges on successive convex approximation techniques and a novel probabilistic model that captures key elements of modern computational architectures and asynchronous … Read more

Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization. Part II: Complexity and Numerical Results

We present complexity and numerical results for a new asynchronous parallel algorithmic method for the minimization of the sum of a smooth nonconvex function and a convex nonsmooth regularizer, subject to both convex and nonconvex constraints. The proposed method hinges on successive convex approximation techniques and a novel probabilistic model that captures key elements of … Read more

Block-wise Alternating Direction Method of Multipliers with Gaussian Back Substitution for Multiple-block Convex Programming

We consider the linearly constrained convex minimization model with a separable objective function which is the sum of m functions without coupled variables, and discuss how to design an efficient algorithm based on the fundamental technique of splitting the augmented Lagrangian method (ALM). Our focus is the specific big-data scenario where m is huge. A … Read more

Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however … Read more

Smooth minimization of nonsmooth functions with parallel coordinate descent methods

We study the performance of a family of randomized parallel coordinate descent methods for minimizing the sum of a nonsmooth and separable convex functions. The problem class includes as a special case L1-regularized L1 regression and the minimization of the exponential loss (“AdaBoost problem”). We assume the input data defining the loss function is contained … Read more