We study uncertain linear complementarity problems (LCPs), i.e., problems in which the LCP vector q or the LCP matrix M may contain uncertain parameters. To this end, we use the concept of Gamma-robust optimization applied to the gap function formulation of the LCP. Thus, this work builds upon [16]. There, we studied Gamma-robustified LCPs for l1- and box-uncertainty sets, whereas we now focus on ellipsoidal uncertainty set. For uncertainty in q or M, we derive conditions for the tractability of the robust counterparts. For these counterparts, we also give conditions for the existence and uniqueness of their solutions. Finally, a case study for the uncertain traffic equilibrium problem is considered, which illustrates the effects of the values of Gamma on the feasibility and quality of the respective robustified solutions.