DMulti-MADS: Mesh adaptive direct multisearch for blackbox multiobjective optimization

The context of this research is multiobjective optimization where conflicting objectives are present. In this work, these objectives are only available as the outputs of a blackbox for which no derivative information is available. This work proposes a new extension of the mesh adaptive direct search (MADS) algorithm to constrained multiobjective derivative-free optimization. This method does not aggregate objectives and keeps a list of non dominated points which converges to a (local) Pareto set as long as the algorithm unfolds. As in the single-objective optimization MADS algorithm, this method is built around a search step and a poll step. Under classical direct search assumptions, it is proved that the so-called DMulti-MADS algorithm generates multiple subsequences of iterates which converge to a set of local Pareto stationary points. Finally, computational experiments suggest that this approach is competitive compared to the state-of-the-art algorithms for multiobjective blackbox optimization.

Article

Download

View DMulti-MADS: Mesh adaptive direct multisearch for blackbox multiobjective optimization