Mixed-Integer Programming Approaches to Generalized Submodular Optimization and its Applications

Submodularity is an important concept in integer and combinatorial optimization. A classical submodular set function models the utility of selecting homogenous items from a single ground set, and such selections can be represented by binary variables. In practice, many problem contexts involve choosing heterogenous items from more than one ground set or selecting multiple copies of homogenous items, which call for extensions of submodularity. We refer to the optimization problems associated with such generalized notions of submodularity as Generalized Submodular Optimization (GSO). GSO is found in wide-ranging applications, including infrastructure design, healthcare, online marketing, and machine learning. Due to the often highly nonlinear (even non-convex and non-concave) objective function and the mixed-integer decision space, GSO is a broad subclass of challenging mixed-integer nonlinear programming problems. In this tutorial, we first provide an overview of classical submodularity. Then we introduce two subclasses of GSO, for which we present polyhedral theory for the mixed-integer set structures that arise from these problem classes. Our theoretical results lead to efficient and versatile exact solution methods that demonstrate their effectiveness in practical problems using real-world datasets.

Article

Download

View PDF