This paper proposes a stochastic proximal point method to solve a stochastic convex composite optimization problem. High probability results in stochastic optimization typically hinge on restrictive assumptions on the stochastic gradient noise, for example, sub-Gaussian distributions. Assuming only weak conditions such as bounded variance of the stochastic gradient, this paper establishes a low sample complexity to obtain a high probability guarantee on the convergence of the proposed method. Additionally, a notable aspect of this work is the development of a subroutine to solve the proximal subproblem, which also serves as a novel technique for variance reduction.